振荡器的工作原理以及晶体振荡器的作用
振荡器简单地说就是一个频率源,一般用在锁相环中。详细说就是一个不需要外信号激励、自身就可以将直流电能转化为交流电能的装置。一般分为正反馈和负阻型两种。所谓“振荡”,其涵义就暗指交流,振荡器包含了一个从不振荡到振荡的过程和功能。能够完成从直流电能到交流电能的转化,这样的装置就可以称为“振荡器”。
振荡器最基本组成部分
1 三极管放大器;(起能量控制作用)
2 正反馈网络;(将输出信号反馈一部分至输入端)
3 选频网络;(用以选取所需要的振荡频率,以使振荡器能够在单一频率下振荡,从而获得需要的波形振
种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。
振荡器工作原理
主要有由电容器和电感器组成的LC回路,通过电场能和磁场能的相互转换产程自由振荡。要维持振荡还要有具有正反馈的放大电路,LC振荡器又分为变压器耦合式和三点式振荡器,很多应用石英晶体的石英晶体振荡器,还有用集成运放组成的LC振荡器。
由于器件不可能参数完全一致,因此在上电的瞬间两个三极管的状态就发生了变化,这个变化由于正反馈的作用越来越强烈,导致到达一个暂稳态。暂稳态期间另一个三极管经电容逐步充电后导通或者截止,状态发生翻转,到达另一个暂稳态。这样周而复始形成振荡。
最常见的振荡器之一就是时钟的钟摆。如果您推动钟摆开始摆动,它将以某种频率振荡——每秒钟会来回摆动一定的次数。控制频率的主要是钟摆的长度。
要使物体振荡,能量必须在两种形态之间来回转换。例如,在钟摆中,能量在势能和动能之间转换。当钟摆位于摆动的一端,其能量全部是势能,并准备落下。 当钟摆在循环的中间,所有势能转换为动能,钟摆以最快的速度移动。当钟摆向另一侧运动时,所有动能又转为势能。这两种形态间的能量的转换就是导致振荡的原因。最后由于摩擦的作用,任何物理振荡都会停止。要继续运动,必须在每次循环中添加少许能量。在摆钟里,保持钟摆移动的能量来自弹簧。钟摆在每次敲钟时都得到一点推力,以弥补因摩擦而失去的能量。
振荡器使用注意事项
1、 器具应放置在较牢固的工作台面上,环境应清洁整齐,通风良好。
2、 用户提供的电源插座应有良好的接地措施。
3、 严禁在正常工作的时候移动机器。
4、 严禁物体撞击机器。
5、 严禁儿童接近机器,以防发生意外。
6、 更换熔断器前应先确保电源已切断。
7、 使用结束后请清理机器,不能留有水滴、污物残留。
晶体振荡器的分类及作用
石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚 上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振;而在封装内部添加IC组成振荡电路的晶体元件称为晶体振荡器。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。
晶体振荡器的应用
1.通用晶体振荡器,用于各种电路中,产生振荡频率。
2.时钟脉冲用石英晶体谐振器,与其它元件配合产生标准脉冲信号,广泛用于数字电路中。
3.微处理器用石英晶体谐振器。
4.CTVVTR用石英晶体谐振器。
基本分类
晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数:谐振电阻(RR),谐振器没有电阻要求。RR的大小直接影响电路的性能,因此这是各商家竞争的一个重要参数。钟表用石英晶体振荡器。
功能作用
晶振在应用具体起到的作用,微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;RC(电阻、电容)振荡器。一种是皮尔斯振荡器配置,适用于晶振和陶瓷谐振槽路。另一种为简单的分立RC振荡器。基于晶振与陶瓷谐振槽路的振荡器通常能提供非常高的初始精度和较低的温度系数。RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。但其性能受环境条件和电路元件选择的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、 机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。上述大部分问题都可以通过使用振荡器 模块避免。这些模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成RC振荡器(硅振荡器)。晶振模块提 供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。
选择振荡器时还需要考虑功耗。分立振荡器的功耗主要由反馈放大器的电源电流以及电路内部的电容值所决定。CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电 容值。比如,HC04反相器门电路的功率耗散电容值是90pF。在4MHz、5V电源下工作时,相当于1.8mA的电源电流。再加上20pF的晶振负载电 容,整个电源电流为2.2mA。陶瓷谐振槽路一般具有较大的负载电容,相应地也需要更多的电流。相比之下,晶振模块一般需要电源电流为10mA ~60mA。硅振荡器的电源电流取决于其类型与功能,范围可以从低频(固定)器件的几个微安到可编程器件的几个毫安。一种低功率的硅振荡器,如MAX7375,工作在4MHz时只需不到2mA的电流。 在特定的应用场合优化时钟源需要综合考虑以下一些因素:精度、成本、功耗以及环境需求。