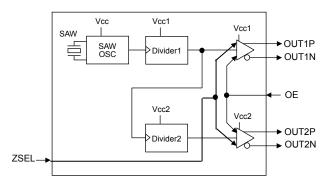
SAW-Based Differential Multi Output (HCSL) : MG7050HAN


Features

- Ultra Low jitter : 0.3 ps Max.
- 2 or 4 outputs and it is able to reduce fan-out buffers
- Frequency range : 100 MHz to 200 MHz
- Supply voltage : 2.5 V / 3.3 V
- External dimensions : 7.0 × 5.0 × 1.6 mm
- Output : HCSL (2 or 4 outputs)
- Output impedance select by ZSEL
- Pb free.
- Complies with EU RoHS directive.

Applications

- Server, Storage,
- Networking etc.

Notice

-This material is a manual for the product and does not guarantee the specification of product.

-This material is subject to change without notice.

-Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson. -The information, applied circuitry, programming, usage, etc., written in this material is intended for reference only. Seiko Epson does not assume any liability for the occurrence of infringing on any patent or copyright of a third party. This material does not authorize the licensing for any patent or intellectual copyright.

-Any product described in this material may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.

-These products are intended for general use in electronic equipment. When using them in specific applications that require extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.

/Space equipment (artificial satellites, rockets, etc.) /Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.)

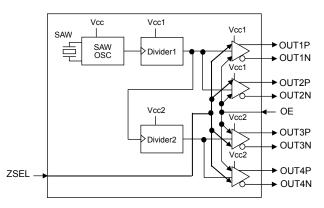
/Medical instruments to sustain life

/Submarine transmitters

/Power stations and related

/Fire work equipment and security equipment

/Traffic control equipment /and others requiring equivalent reliability.


- The manual does not guarantee the specification of product.

Description

This product is high frequency oscillator of HCSL outputs using fundamental oscillation of SAW resonator. This has realized a low-jitter and low noise in frequency 100 to 200 MHz, and is suitable for the reference clock include Server, Storage and others.

4 outputs

1. Electrical characteristics

1) Absolute maximum ratings

Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
Supply voltage	Vcc	V	-0.5	-	+4.0	
Storage temperature	T _{STG}	О°	-55	-	+125	Store as bare product after packing
Input voltage	V _{IN}	V	-0.5	-	V _{CC} +0.5	

2) Operating conditions

Parameter	Symbol	Unit	Min.	Тур.	Max		Notes
Sumply valtere	\/	V	2.97	3.3	3.63	Part C	Vcc, Vcc1, Vcc2
Supply voltage	V _{CC}	v	2.375	2.5	2.625	Part D	need same voltage
Output frequency	fo	MHz	100	-	200		
	T _{use}	°C	0	-	+70	Part A	
Operating temperature			-20	-	+70	Part B	
range			-5	-	+85	Part D	
	CL	pF		2			
	Rs Ω	0	33			ZSEL=HIGH	
Output load condition		12	27			ZSEL=LOW	
		SL Ω	50			ZSEL=HIGH	
	L_HCSL	Ω	42.2			ZSEL=LOW	

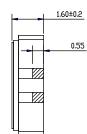
3) Frequency characteristics

Parameter	Symbol	Unit	Min.	Typ.	Max		Notes
i didiliotoi	Cynisol	01110	-50	. yp.	+50	Part J	110100
Frequency tolerance	f_tol	× 10⁻ ⁶					
. ,			-100	-	+100	Part L	
Frequency aging f_a	face	_age × 10 ⁻⁶	-10	-	+10	Part N	First year、25°C
	'_aye		Include on frequency tolerance			Part A *1	10 years、25°C
*4 "A" is not accortable wit				7			10 900.00 20 0

*1 "A" is not acceptable when Frequency tolerance is "J" and Operating temperature is "B" or "D".

4) Characteristics

							[GND=0.0 V]
Parameter	Symbol	Unit	Min.	Тур.	Max	Notes	
Oscillation start up time	T_str	ms	-	5	10		
			-	60	90	V _{CC} =3.3V, 2-outputs	OE= V _{CC} 、
Current consumption		mA	-	100	136	V _{CC} =3.3V, 4-outputs	with output
Current consumption	I _{CC}	IIIA	-	55	84	V _{CC} =2.5V, 2-outputs	load
			-	95	128	V _{CC} =2.5V, 4-outputs	loau
			-	12	25	V _{CC} =3.3V, 2-outputs	
Disable current	I dis	mA		16	30	V _{CC} =3.3V, 4-outputs	OE=GND
Disable current	I_UIS	IIIA		11	23	V _{CC} =2.5V, 2-outputs	OE-GIND
			-	15	28	V _{CC} =2.5V, 4-outputs	
Rise skew rate	Rr	V/ns	1	-	4	at outputs crossing poi	nt
Fall skew rate	Rf	V/ns	1	-	4	at outputs crossing poi	nt
Symmetry	SYM	%	45	50	55		
High output voltage	V _{OH}	V	0.66	-	0.85	DC characteristics	
Low output voltage	V _{OL}	V	-0.15	0	+0.15	DC characteristics	
High input voltage	V _{IH}	V	70 %Vcc	-	Vcc+0.3	OE, ZSEL terminal	
Low Input voltage	VIL	V	-0.3	-	30 %Vcc	OE, ZSEL terminal	
	I _{IH}		-	-	2	V _{IN} =Vcc, OE, ZSEL ter	minal
Input current	L.	μA	-60	-	-20	V _{CC} =3.3V V _{IN} =	
	IIL		-45	-	-15	V _{CC} =2.5V	GND
Disable delay time	t _{pxz}	ns	-	-	100	OE terminal "H" \rightarrow "L"	
Enable delay time	t _{pzx}	ns	-	-	100	OE terminal "L" \rightarrow "H"	
Skew	t _{skew}	ps	-	20	50	ZSEL=HIGH	
		t _{PJ} ps -	-	0.16(0.19)		f0=100MHz, Vcc=3.3V	
			-	0.15(0.18)	0.3	f0=125MHz, Vcc=3.3V	
Phase Jitter *2	τ _Ρ υ		-	0.13(0.16)	0.5	f0=156.25MHz, Vcc=3.3V(2.5V)	
			-	0.12(0.14)		f0=200MHz, Vcc=3.3V	(2.5V)
		1					


*2 Offset frequency: 12 kHz to 20 MHz

[GND=0.0 V]

2. Outline 2-1) Outline dimensions and Pin information

Unit: mm

Dia	Connections				
Pin	2-outputs	4-outputs			
1	V _{cc} 1				
2	GND	OUT1P			
3	OUT1P	OUT1N			
4	OUT1N	OUT2P			
5	GND	OUT2N			
6	ZSEL				
7	OE				
8	GND	OUT3N			
9	OUT2N	OUT3P			
10	OUT2P	OUT4N			
11	GND	OUT4P			
12	V _{cc} 2				
13	V _{cc}				
14	GND				

2-2) Pin map and Function of terminals 2-outputs

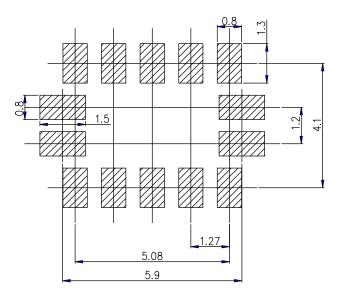
Connection	No.	Туре	Remarks				
Vcc1	1	-	Vcc pin (for OUT1)				
GND	2	-	GND pin				
OUT1P	3	OUTPUT	Output pin				
OUT1N	4	OUTPUT	Output pin, inversion of #3				
GND	5	-	GND pin				
ZSEL	6	INPUT	Output load impedance select pin. "H":differential 100Ω "L":differential 85Ω				
OE	7	INPUT	Output enable pin. As per below table. Input level Oscillation Outputs "H" Enable Enable : specified frequency "L" Enable Disable : Hi-Z				
GND	8	-	GND pin				
OUT2N	9	OUTPUT	Output pin, inversion of #10				
OUT2P	10	OUTPUT	Output pin				
GND	11	-	GND pin				
Vcc2	12	-	Vcc pin (for OUT2)				
Vcc	13	-	Vcc pin (for Oscillation circuit)				
GND	14	-	GND pin				

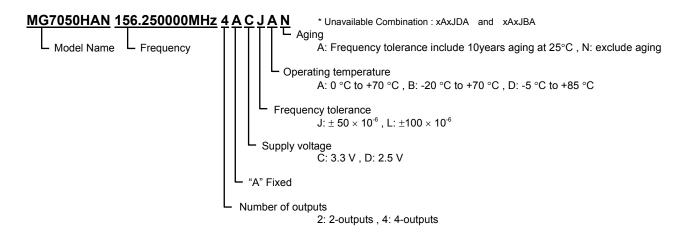
4-outputs

outputs						
Connection	No.	Туре	Remarks			
Vcc1	1	-	Vcc pin (for OUT1,OUT2)			
OUT1P	2	OUTPUT	Output pin			
OUT1N	3	OUTPUT	Output pin, inversion of #2			
OUT2P	4	OUTPUT	Output pin			
OUT2N	5	OUTPUT	Output pin, inversion of #4			
ZSEL	6	INPUT	Output load impedance select pin. "H" : differential 100Ω "L" : differential 85Ω			
OE	7	INPUT	Output enable pin. As per below table. Input level Oscillation Outputs "H" Enable Enable : specified frequency "L" Enable Disable : Hi-Z			
OUT3N	8	OUTPUT	Output pin, inversion of #9			
OUT3P	9	OUTPUT	Output pin			
OUT4N	10	OUTPUT	Output pin, inversion of #11			
OUT4P	11	OUTPUT	Output pin			
Vcc2	12	-	Vcc pin (for OUT3,OUT4)			
Vcc	13	-	Vcc pin (for Oscillation circuit)			
GND	14	-	GND pin			

* The metal part of the surface (metal cap) and the center electrode of the pin side are connected to GND(#14).

* The center electrode of the pin side is non-connection or GND.

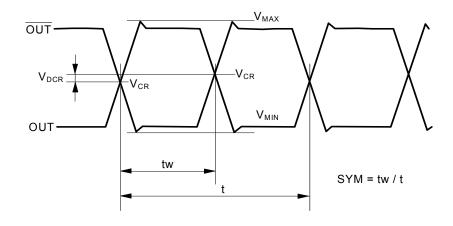

* Unused output pairs may be left floating.

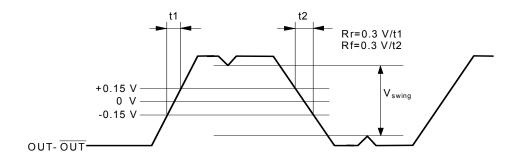

2-3) Soldering pattern

Example of patterning design indicated as follows. In an actual design, please consider mounting density, the reliability of soldering, etc. and check whether performance is optimal.

Soldering pattern

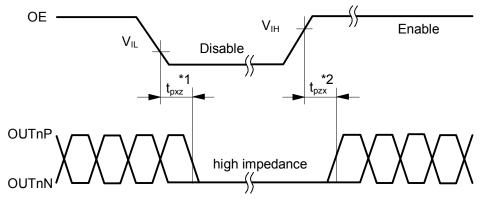
3. Part Number




4. Timing chart

1) Output waveform

Each output waveform (OUT*P and OUT*N)



Differential output waveform (OUT*P - OUT*N)

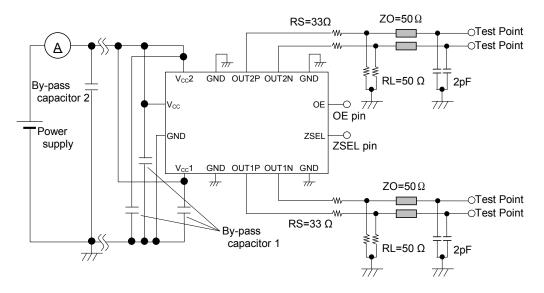
2) OE function and timing

OE input level	Oscillation	Outputs
"H"	Enable	Enable : specified frequency
"L"	Enable	Disable : high impedance

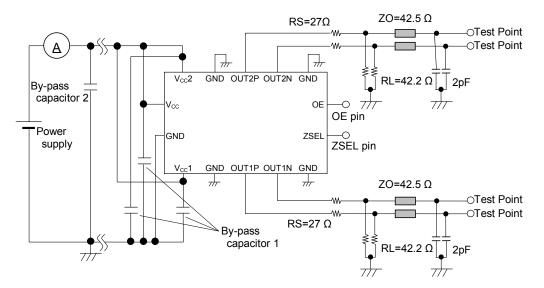
*1 The time taken from $OE=V_{IL}$ to OUTnP/OUTnN=Disable (high impedance).

*2 The time taken from $OE=V_{IH}$ to OUTnP/OUTnN =Enable.

* OE input voltage must be lower than Vcc. Note that rise-up time of OE input voltage must not be shorter than the rise-up time of supply voltage.

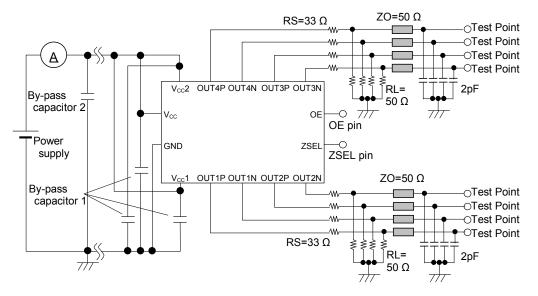


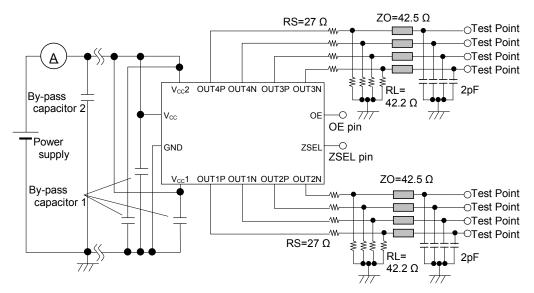
5. Reference circuit


5-1) Test circuit

2-outputs

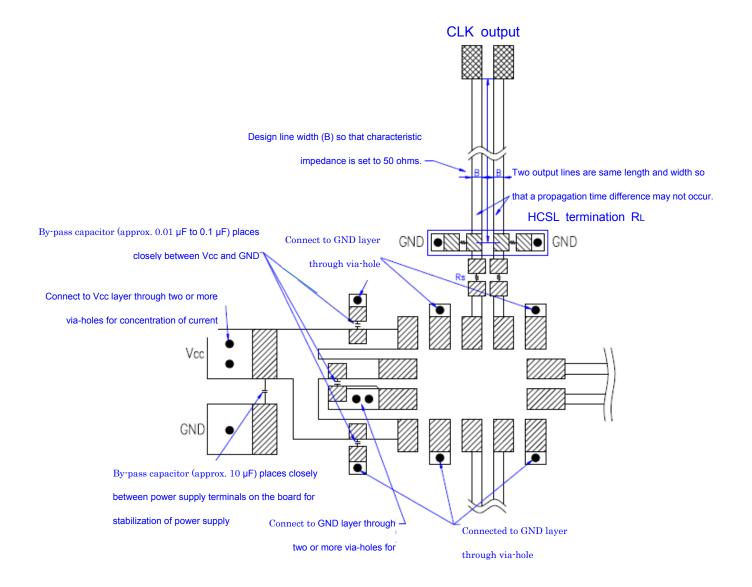
·Case of ZSEL=H (RS= 33Ω /RL= 50Ω /ZO= 50Ω)

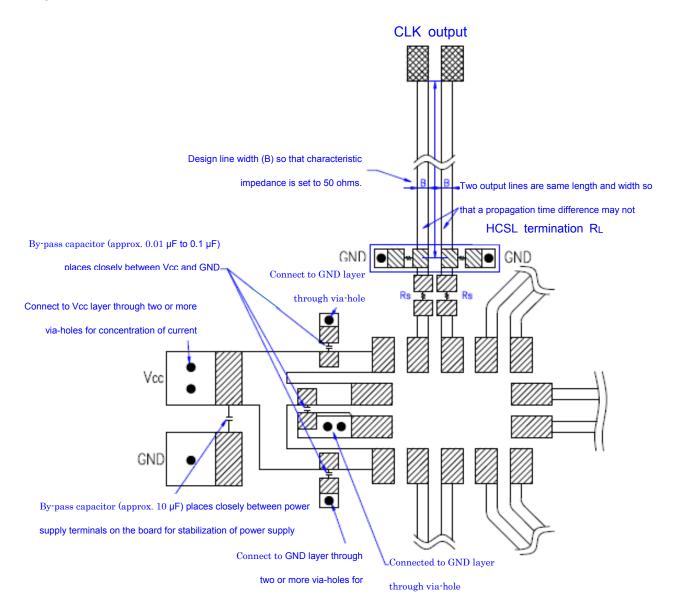

•Case of ZSEL=L (RS= $27\Omega/RL=42.2\Omega/ZO=42.5\Omega$)



4-outputs

·Case of ZSEL=H (RS=33 Ω /RL=50 Ω /ZO=50 Ω)


•Case of ZSEL=L (RS= $27\Omega/RL=42.2\Omega/ZO=42.5\Omega$)


5-2) PCB layout (multilayers, with Vcc and GND layer inside)

2-outputs

4-outputs

6. Handling precaution

Quartz parts are precision parts. Please handle carefully paying attention to the next points

- 1) This device contains a SAW resonator, so please do not expose to excessive shock or vibration.
- 2) Ultrasonic cleaning can be used on this product, however, since the oscillator might be damaged under some conditions, please exercise caution in advance.
- 3) An automatic insertion is available, however, the internal SAW resonator might be damaged in case that too much shock or vibration is produced mechanically.Be sure to check your machine condition in advance.
- 4) This device is made with C-MOS IC.

Please take necessary precautions to prevent damage due to electrical static discharge.

- 5) We recommend placing a 0.01 μF to 0.1 μF capacitor closely between Vcc(#13pin), Vcc1(#1pin), Vcc2(#12pin) and GND(#2pin) to obtain stable operation and protest against power line ripple.
- 6) Vcc and GND pattern shall be as large as possible so that high frequency impedance shall be small.
- 7) The metal part of the surface (metal cap) is connected to GND #2pin.

Please take necessary precautions to prevent short circuit to GND by contact with the metal cap.

8) Start up time (0 to 90% Vcc) of power source should be more than 150 µs and slew rate should be less than 19.8 mV/µs.
We doesn't recommend to power on from intermediate electric voltage or extreme fast power on.

Those powering conditions may cause no oscillation or abnormal oscillation.

- 9) Please design the output lines by characteristic impedance 50 Ω and try to make the output lines as short as possible. A long output line may cause irregular output.
- 10) Other high level signal lines may cause incorrect operation, so please do not place high-level signal line close to this device.
- 11) We recommend to use and store under room temperature and normal humidity to secure frequency accuracy and prevent moisture.
- 12) When not use OE pin connection, please use connecting to Vcc.

We recommend installation of a resistor in between to mitigate effect by surge etc.

- 13) When distributing output signals, please use the clock divider IC (HCSL fanout buffer).
- 14) Please arrange HCSL terminal resistance with both outputs, even if only one output signal is used.
- 15) DUT's surface temperature may rise from surrounding temperature by self heat-generation. Please confirm a rise in temperature with DUT mounted to an actual substrate, because it may change from the mounting condition.
- 16) Recommendation reflow times are less than 2 times.

In case that this device is reflow soldered on the back side of your circuit board, please carefully verify the device is properly

- secured to prevent coming detached from card.
- 17) The ripple and the noise included in the supplied power supply might be deteriorated of the noise property of this oscillator.

Please enough consideration to design of power supply.

18) The ripple and the noise included in the supplied power supply might be deteriorated of the noise property of this oscillator.

Please optionally add the LC filter circuit.

Soldering method	Good or No good
Reflow soldering (top side)	Good
Reflow soldering (back side)	Please carefully verify the device is properly secured to prevent coming detached from card.
Solder pot (static solder pot / flow solder pot)	No good
Iron soldering	Good

7. Contact

<u>America</u>

Epson Electronics America, Inc. 214 Devcon Drive, San Jose, CA 95112, U.S.A. Phone: +1-800-228-3964 FAX: +1-408-922-0238

<u>Europe</u>

Epson Europe Electronics GmbH Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0 FAX: +49-89-14005-110

<u>Asia</u>

Epson (China) Co., Ltd.

7F, Jinbao Bldg., No.89 Jinbao Street Dongcheng District, Beijing, China, 100005 Phone: +86-10-8522-1199 FAX: +86-10-8522-1120

Shanghai Branch

High-Tech Building, 900 Yishan Road, Shanghai 200233, China Phone: +86-21-5423-5577 FAX: +86-21-5423-4677

Shenzhen Branch

12/F, Dawning Mansion, #12 Keji South Road, Hi-Tech Park, Shenzhen, China Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

Epson Hong Kong Ltd.

Unit 715-723 7/F, Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: (86) 755-26993828 (Shenzhen Branch) FAX: (86) 755-26993838 (Shenzhen Branch)

Epson Taiwan Technology & Trading Ltd. 14F, No. 7, Song Ren Road, Taipei 110, Taiwan Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

Epson Singapore Pte., Ltd. No 1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

Seiko Epson Corp. Korea Office

5F (63Bldg.,Yoido-dong) 50, 63-ro, Yeongdeungpo-gu, Seoul, 150-763, Korea Phone: +82-2-784-6027 FAX: +82-2-767-3677